104 research outputs found

    Chemical and molecular basis of the carcinogenicity of Aristolochia plants

    Get PDF
    The herbal drug aristolochic acid (AA), which is derived from the Aristolochia species, has been associated with the development of a novel nephropathy, designated as aristolochic acid nephropathy (AAN), and with human urothelial cancer. The major components of the plant extract AA are nitrophenanthrene carboxylic acids, which, after metabolic activation, are genotoxic mutagens. The major activation pathway of AA involves reduction of the nitro group, primarily catalyzed by NAD(P) H: quinone oxidoreductase (NQO1), to an electrophilic cyclic N-acylnitrenium ion that reacts preferentially with purine bases to form covalent DNA adducts. These specific AA-DNA adducts have been identified and detected in experimental animals exposed to AA or botanical products containing AA, and in urothelial tissues from AAN patients. In rodent tumors induced by AA the predominantly formed DNA adduct 7-(deoxyadenosin-N-6-yl) aristolactam I has been associated with the activation of ras oncogenes through the characteristic transversion mutation AT -> TA. This mutation has been identified in the p53 gene of urothelial tumors of a patient with AAN (induced by use of a herbal product) and in several patients suffering from Balkan endemic nephropathy (BEN) with specific AA-DNA adducts. This is a rare example of a human cancer causally linked to a distinct environmental exposure (ie, use of a herbal product), where the carcinogenic process of initiation is well established, linking formation of carcinogen-specific exposure (specific DNA adduct formation) with the presence of characteristic human tumor mutations

    Metabolic activation of carcinogenic aristolochic acid, a risk factor for Balkan endemic nephropathy

    Get PDF
    Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, is associated with tumor development in patients suffering from Chinese herbs nephropathy (now termed aristolochic acid nephropathy, AAN) and may also be a cause for the development of a similar type of nephropathy, the Balkan endemic nephropathy (BEN). Major DNA adducts [7-(deoxyadenosin-N-6-yl)-aristolactam and 7-(deoxyguanosin-N-2-yl)aristolactam] formed from AA after reductive metabolic activation were found in renal tissues of patients with both diseases. Understanding which human enzymes are involved in AA activation and/or detoxication is important in the assessment of an individual's susceptibility to this plant carcinogen. This paper reviews major hepatic and renal enzymes responsible for AA-DNA adduct formation in humans. Phase I biotransformation enzymes play a crucial role in the metabolic activation of AA to species forming DNA adducts, while a role of phase II enzymes in this process is questionable. Most of the activation of AA in human hepatic microsomes is mediated by cytochrome P450 (CYP) 1A2 and, to a lower extent, by CYP1A1; NADPH:CYP reductase plays a minor role. In human renal microsomes NADPH:CYP reductase is more effective in AA activation. Prostaglandin H synthase (cyclooxygenase, COX) is another enzyme activating AA in human renal microsomes. Among the cytosolic reductases, NAD(P)H:quinone oxidoreductase (NQO I) is the most efficient in the activation of AA in human liver and kidney. Studies with purified enzymes confirmed the importance of CYPs, NADPH:CYP reductase, COX and NQO1 in the AA activation. The orientation of AA in the active sites of human CYP1A1, -1A2 and NQO1 was predicted from molecular modeling and explains the strong reductive potential of these enzymes for AA detected experimentally. We hypothesized that inter-individual variations in expressions and activities of enzymes activating AA may be one of the causes responsible for the different susceptibilities to this carcinogen reflected in the development of AA-induced nephropathies and associated urothelial cancer. (c) 2007 Elsevier B.V. All rights reserved

    The genotoxic air pollutant 3-nitrobenzanthrone and its reactive metabolite N-hydroxy-3-aminobenzanthrone lack initiating and complete carcinogenic activity in NMRI mouse skin

    Get PDF
    3-Nitrobenzanthrone (3-NBA), a genotoxic mutagen found in diesel exhaust and ambient air pollution and its active metabolite N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA) were tested for initiating and complete carcinogenic activity in the NMRI mouse skin carcinogenesis model. Both compounds were found to be inactive as either tumour initiators or complete carcinogens in mouse skin over a dose range of 25-400 nmol. Topical application of 3-NBA and N-OH-3-ABA produced DNA adduct patterns in epidermis, detected by P-32-postlabelling, similar to those found previously in other organs of rats and mice. 24 h after a single treatment of 100 nmol DNA adduct levels produced by 3-NBA (18 +/- 4 adducts/10(8) nucleotides) were 6 times lower than those by 7,12-dimethylbenz[a]anthracene (DMBA; 114 +/- 37 adducts/10(8) nucleotides). In contrast, identical treatment with N-OH-3-ABA resulted in adduct levels in the same range as with DMBA (136 +/- 25 adducts/10(8) nucleotides), indicating that initial DNA adduct levels do not parallel tumour initiating activity. When compounds were tested for tumour initiating activity by a single treatment followed by twice-weekly applications of TPA. DNA adducts formed by DMBA, but not by 3-NBA or N-OH-3-ABA, were still detectable 40 weeks after treatment. When tested for activity as complete carcinogens by twice-weekly topical application, 3-NBA and N-OH-3-ABA produced identical DNA adduct profiles in mouse skin, with adducts still detectable after 40 weeks. Only 3-NBA produced detectable adducts in other organs. (C) 2009 Elsevier Ireland Ltd. All rights reserved

    Mechanisms of Enzyme-Catalyzed Reduction of Two Carcinogenic Nitro-Aromatics, 3-Nitrobenzanthrone and Aristolochic Acid I: Experimental and Theoretical Approaches

    Get PDF
    Abstract: This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA) and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI), to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human NAD(P)H:quinone oxidoreductase (NQO1) and cytochromes P450 (CYP) 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions. The contribution of conjugation enzymes such as N,O-acetyltransferases (NATs) and sulfotransferases (SULTs) to the activation of 3-NBA and AAI was also examined. The results indicated differences in the abilities of 3-NBA and AAI metabolites to be further activated by these conjugation enzymes. The formation of DNA adducts generated by both carcinogens during their reductive activation by the NOQ1 and CYP1A1/

    Induction of biotransformation enzymes by the carcinogenic air-pollutant 3-nitrobenzanthrone in liver, kidney and lung, after intra-tracheal instillation in rats

    Get PDF
    3-Nitrobenzanthrone (3-NBA), a carcinogenic air pollutant, was investigated for its ability to induce cytochrome P450 (CYP) 1A1/2 and NAD(P)H:quinone oxidoreductase (NQO1) in liver, kidney and lung of rats treated by intra-tracheal instillation. The organs used were from a previous study performed to determine the persistence of 3-NBA-derived DNA adducts in target and non-target tissues (Bieler et al., Carcinogenesis 28 (2007) 1117-1121, [22]). NQO1 is the enzyme reducing 3-NBA to N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA) and CYP1A enzymes oxidize a human metabolite of 3-NBA, 3-aminobenzanthrone (3-ABA), to yield the same reactive intermediate. 3-NBA and 3-ABA are both activated to species forming DNA adducts by cytosols and/or microsomes isolated from rat lung, the target organ for 3-NBA carcinogenicity, and from liver and kidney. Each compound generated the same five DNA adducts detectable by P-32-postlabelling. When hepatic cytosols from rats treated with 0.2 or 2 mg/kg body weight of 3-NBA were incubated with 3-NBA, DNA adduct formation was 3.2- and 8.6-fold higher, respectively, than in incubations with cytosols from control animals. Likewise, cytosols isolated from lungs and kidneys of rats exposed to 3-NBA more efficiently activated 3-NBA than those of control rats. This increase corresponded to an increase in protein levels and enzymatic activities of NQO1. Incubations of hepatic, pulmonary or renal microsomes of 3-NBA-treated rats with 3-ABA led to an 9.6-fold increase in DNA-adduct formation relative to controls. The highest induction in DNA-adduct levels was found in lung. The stimulation of DNA-adduct formation correlated with expression of CYP1A1/2 induced by the intra-tracheal instillation of 3-NBA. The results demonstrate that 3-NBA induces NQO1 and CYP1A1/2 in livers, lungs and kidneys of rats after intra-tracheal instillation, thereby enhancing its own genotoxic and carcinogenic potential. (c) 2010 Elsevier B.V. All rights reserved

    Genotoxicity of 3-nitrobenzanthrone and 3-aminobenzanthrone in Muta™Mouse and lung epithelial cells derived from Muta™Mouse

    Get PDF
    FE1 lung epithelial cells derived from Muta (TM) Mouse are a new model system to provide in vitro mutagenicity data with the potential to predict the outcome of an in vivo Muta (TM) Mouse test. 3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust and urban air pollution. We investigated the mutagenicity and DNA binding of 3-NBA and its main metabolite 3-aminobenzanthrone (3-ABA) in vitro and in vivo in the Muta (TM) Mouse assay. Mice were treated with 3-NBA or 3-ABA (0, 2 or 5 mg/kg body weight/day) by gavage for 28 days and 28 days later lacZ mutant frequency (MF) was determined in liver, lung and bone marrow. For both compounds, dose-related increases in MF were seen in liver and bone marrow, but not in lung; mutagenic activity was similar to 2-fold lower for 3-ABA than for 3-NBA. With 3-NBA, highest DNA adduct levels (measured by P-32-post-labelling) were found in liver (similar to 230 adducts per 10(8) nucleotides) with levels 20- to 40-fold lower in bone marrow and lung. With 3-ABA, DNA adduct levels were again highest in the liver, but similar to 4-fold lower than for 3-NBA. FE1 cells were exposed to up to 10 mu g/ml 3-NBA or 3-ABA for 6 h with or without exogenous activation (S9) and harvested after 3 days. For 3-NBA, there was a dose-related increase in MF both with and without S9 mix, which was > 10 times higher than observed in vivo. At the highest concentration of 3-ABA (10 mu g/ml), we found only around a 2-fold increase in MF relative to controls. DNA adduct formation in FE1 cells was dose-dependent for both compounds, but 10- to 20-fold higher for 3-NBA compared to 3-ABA. Collectively, our data indicate that Muta (TM) Mouse FE1 cells are well suited for cost-effective testing of suspected mutagens with different metabolic activation pathways as a guide for subsequent in vivo Muta (TM) Mouse testing

    TP53 and lacZ mutagenesis induced by 3-nitrobenzanthrone in Xpa-deficient human TP53 knock-in mouse embryo fibroblasts

    Get PDF
    Abstract3-Nitrobenzanthrone (3-NBA) is a highly mutagenic compound and possible human carcinogen found in diesel exhaust. 3-NBA forms bulky DNA adducts following metabolic activation and induces predominantly G:C>T:A transversions in a variety of experimental systems. Here we investigated the influence of nucleotide excision repair (NER) on 3-NBA-induced mutagenesis of the human tumour suppressor gene TP53 and the reporter gene lacZ. To this end we utilised Xpa -knockout (Xpa-Null) human TP53 knock-in (Hupki) embryo fibroblasts (HUFs). As Xpa is essential for NER of bulky DNA adducts, we hypothesized that DNA adducts induced by 3-NBA would persist in the genomes of Xpa-Null cells and lead to an increased frequency of mutation. The HUF immortalisation assay was used to select for cells harbouring TP53 mutations following mutagen exposure. We found that Xpa-Null Hupki mice and HUFs were more sensitive to 3-NBA treatment than their wild-type (Xpa-WT) counterparts. However, following 3-NBA treatment and immortalisation, a similar frequency of TP53-mutant clones arose from Xpa-WT and Xpa-Null HUF cultures. In cells from both Xpa genotypes G:C>T:A transversion was the predominant TP53 mutation type and mutations exhibited bias towards the non-transcribed strand. Thirty-two percent of 3-NBA-induced TP53 mutations occurred at CpG sites, all of which are hotspots for mutation in smokers’ lung cancer (codons 157, 158, 175, 245, 248, 273, 282). We also examined 3-NBA-induced mutagenesis of an integrated lacZ reporter gene in HUFs, where we again observed a similar mutant frequency in Xpa-WT and Xpa-Null cells. Our findings suggest that 3-NBA-DNA adducts may evade removal by global genomic NER; the persistence of 3-NBA adducts in DNA may be an important factor in its mutagenicity

    Rat cytochromes P450 oxidize 3-aminobenzanthrone, a human metabolite of the carcinogenic environmental pollutant 3-nitrobenzanthrone

    Get PDF
    3-Aminobenzanthrone (3-ABA) is a human metabolite of carcinogenic 3-nitrobenzanthrone (3-NBA), which occurs in diesel exhaust and air pollution. Understanding which cytochrome P450 (CYP) enzymes are involved in metabolic activation and/or detoxication of this toxicant is important in the assessment of an individual's susceptibility to this substance. The aim of this study was to evaluate the efficiency of rat hepatic CYPs to oxidize 3-ABA and to examine the metabolites formed during such an oxidation. The metabolites formed by CYPs in rat hepatic microsomes were separated by high performance liquid chromatography (HPLC). 3-ABA is oxidized by these enzymes to three metabolites, which were separated by HPLC as distinguish product peaks. Using co-chromatography with synthetic standards, two of them were identified to be oxidative metabolites of 3-ABA, N-hydroxy-3-ABA and 3-NBA. The structure of another 3-ABA metabolite remains to be characterized. To define the role of rat hepatic CYP enzymes in metabolism of 3-ABA, we investigated the modulation of its oxidation using different inducers of CYPs for treatment of rats to enrich the liver microsomes with individual CYPs. Based on these studies, we attribute most of 3-ABA oxidation in rat hepatic microsomes to CYP2B, followed by CYP1A, although a role of other hepatic CYPs cannot be ruled out. Inhibition of 3-ABA oxidation by selective inhibitors of individual CYPs, supported this finding
    corecore